If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3s^2+12s-8=0
a = 3; b = 12; c = -8;
Δ = b2-4ac
Δ = 122-4·3·(-8)
Δ = 240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{240}=\sqrt{16*15}=\sqrt{16}*\sqrt{15}=4\sqrt{15}$$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-4\sqrt{15}}{2*3}=\frac{-12-4\sqrt{15}}{6} $$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+4\sqrt{15}}{2*3}=\frac{-12+4\sqrt{15}}{6} $
| y+5-8=4 | | 9n+2=2n | | 9n+2=29 | | p=6=8-4p | | 4-(3x-2)=-9 | | 7(3x+1)=3(7x+2)+2 | | 12m-9=7m+26 | | -19.8*x^2+20.8*x+3=0 | | 4.9*x^2-20.8*x+3=0 | | -4.9*x^2+20.8*x+3=0 | | 4.9*x^2+20.8*x+3=0 | | x^=192 | | X+5=2y-10 | | 4x-18=10+2x | | 10X+15y=15.000 | | 5x+10+9x+2=180 | | t^2-t+100=0 | | X+x+x-30+1/2x+5=180 | | 13+3(3x+8)=x- | | -40x+18+-20x+3+-15x+9=18- | | 4(4x-1.6)=3x-6.4 | | 5x+1/6=4x-1/2 | | 7x-41.5x-12.2x+9=180 | | 2(x+1)/5+x=5x/3+6 | | y=0.5(100-y) | | 2(x-3)=(x+3)/3+2x | | 2x+5=10x-6 | | 64=32^x-4 | | x+28.x-28.x=180 | | m-8+8=96 | | 3x-20.x-9.x-1=180 | | 75+n-17=100 |